skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Lisa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. It is emphasized in national legislation, such as the America COMPETES Act and the more recent CHIPS and Science Act, that research integrity is considered essential to the competitiveness and innovation of the U.S. economy. Various stakeholders, particularly research universities, have been developing interventions and programs to foster an ethical culture in STEM (science, technology, engineering, and mathematics) research and practice among faculty and students. Dominant approaches to research ethics education have historically been shaped by biomedical ethics and the broader ethics of science, placing significant emphasis on misconduct of individual researchers, including the falsification, fabrication, and plagiarism (FFP) of research results. Although these approaches have contributed to promoting ethical conduct among individual researchers, we argue that they still face several challenges. Most notably, due to their narrow scope, traditional research ethics education approaches fail to consider the role of disciplinary cultures in shaping research ethics issues. Additionally, they do not leverage the agency of STEM researchers to identify and address these issues or to generate scalable and sustainable impacts within institutions. To address these issues, this paper introduces the IREI (Innovative Research and Ethical Impact) project, which provides an institutional transformation approach to research ethics education for faculty in STEM fields. This approach aims to transform the institutional culture for ethical STEM research by helping faculty develop and enhance their capacity to identify and address ethical issues in their daily work, while generating scalable and sustainable impacts by leveraging their social networks. More specifically, this paper introduces the curriculum design for a professional development workshop for STEM faculty, which is a key component of the IREI project. This faculty development workshop begins by broadening the understanding of ethics, shifting the focus from aligning the conduct of individual researchers with predetermined ethical principles to the impacts of their actions on the lives of others, as well as on the broader environment and society. This expanded definition is used for two main reasons. First, it emphasizes that it is the actions themselves that ultimately affect others, rather than merely a researcher’s intent or the ethical justification of their behavior. Second, it highlights that future potential impacts are as crucial in research as present, actual impacts—if not more so—since research is intrinsically novel and often future-oriented. Based on this definition, researchers are introduced to steps in the research process, from formulating questions to disseminating results. Participants are then provided with reflective tools and hands-on activities to enhance their ethical sensitivity and expertise throughout the entire research process. This enables them to identify (1) who is affected by their research at various stages and how they are impacted, and (2) strategies to maximize positive effects while minimizing any negative consequences. Finally, faculty are provided with mentoring opportunities to incorporate these reflective insights into broader impacts statements of their own research proposals and projects. Given that these statements directly pertain to their research, we hope that participants will view this workshop as both significant and relevant, as they have a natural interest in making their statements as clear and compelling as possible. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. There is consensus that the integration of ethics into STEM curricula is critical for cultivating cultures for ethical practices in STEM research. We argue that the establishment of the Ethics and Responsible Research (ER2) program, previously known as Cultivating Cultures for Ethical STEM (CCE-STEM), at NSF was driven by a cultural perspective on ethics education. According to the most recent version of its solicitation, A comprehensive approach to ethical STEM not only influences individual behavior, but it also maintains and fosters an ethical, equitable and just culture within an organization or research field. Thus, investigators submitting to the program are encouraged to examine organizational and cultural factors that influence ethical and responsible research practice (NSF, 2023). Such a cultural approach to STEM ethics education is primarily essentially holistic and pragmatic. It adopts a holistic approach by recognizing that ethics education occurs within a cultural context, and that an individual's ethical conduct can be both influenced and constrained by their research or workplace contexts. Additionally, it adopts a pragmatic perspective by viewing the objective of ethics education not merely as influencing individual ethical reasoning (as is commonly anticipated in most STEM ethics initiatives) but as an endeavor to engender more systematic, institutional-level transformations in the ethical climate in which individual scientists and engineers work. Moreover, the cultivation of an ethical research/workplace culture is considered imperative for fostering sustainable ethical transformation at both the individual and organizational levels within the campus community. Based on our initial search, while there have been seven institutional transformation projects funded through NSF's CCE STEM or ER2 program, there has been a scarcity of research that systematically compares these funded projects and seeks to derive broader theoretical insights regarding the institutional transformation approach to STEM ethics education. The purpose of this paper is to offer initial insights into the lessons that can be drawn from these funded projects, with the aim of contributing to the theoretical understanding of the institutional transformation approach to STEM ethics education. In particular, this paper seeks to investigate the following research questions: (1) What motivates researchers to opt for an institutional approach over an individualistic one? (2) What theoretical frameworks do researchers employ to tackle institutional transformation? Finally, this paper will outline how our recently awarded institutional transformation grant can benefit from these results. We intend to gather data using three major methods: (1) public summaries of these projects published on NSF’s website; (2) publications listed on each project’s dedicated webpage on NSF’s website as well as additional searches in Google Scholar; and (3) news articles and related commentaries available on the internet pertaining to these projects. We anticipate that the initial findings of this study can offer valuable insights for engineering education researchers, higher education administrators, and policymakers. These insights can aid in the development and implementation of more efficient models for fostering institutional transformation of ethical STEM cultures within and beyond their campuses. 
    more » « less
  3. The sampling and analysis of sewage for pathogens and other biomarkers offers a powerful tool for monitoring and understanding community health trends and potentially predicting disease outbreaks. Since the early months of the COVID-19 pandemic, the use of wastewater-based testing for public health surveillance has increased markedly. However, these efforts have focused on urban and peri-urban areas. In most rural regions of the world, healthcare service access is more limited than in urban areas, and rural public health agencies typically have less disease outcome surveillance data than their urban counterparts. The potential public health benefits of wastewater-based surveillance for rural communities are therefore substantial - though so too are the methodological and ethical challenges. For many rural communities, population dynamics and insufficient, aging, and inadequately maintained wastewater collection and treatment infrastructure present obstacles to the reliable and responsible implementation of wastewater-based surveillance. Practitioner observations and research findings indicate that for many rural systems, typical implementation approaches for wastewater-based surveillance will not yield sufficiently reliable or actionable results. We discuss key challenges and potential strategies to address them. However, to support and expand the implementation of responsible, reliable, and ethical wastewater-based surveillance for rural communities, best practice guidelines and standards are needed. 
    more » « less